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Nomenclature 
 
R = radius of curvature 
dθ = angle of rotation 
εb = maximum bending strain 
db = bar diameter 
ηdes = distance from the compression face of the beam to the neutral axis at θ des divided by the height of the 
beam 
ζ = distance from the center of the mild steel bar to the nearest face divided by the height 
       of the beam 
hg = beam height 
θ des = maximum (design) interface rotation 
Lsu = unbonded length of the mild steel bar at each interface 
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ABSTRACT 
 
While a low cycle fatigue criteria is well established for mild steel bars under axial loading, the effect of combined 
axial and bending loading is not fully developed experimentally nor analytically. This paper intends to address this 
condition that is applicable to the behavior of mild steel bars in a hybrid frame design. The behavior of mild steel 
plays a significant role in the behavior of prestressed precast hybrid frames. They were used in the PRESSS 
program [8] to prevent potential collapse of buildings erected using hybrid frames. The mild steel is expected to 
undergo yielding and large deformation to absorb snd dissipate energy in an earthquake event. A non-linear finite 
element analysis of a 3-D model of a hybrid frame [Hawileh, 2003], shows that mild steel bars, designed to 
dissipate energy, exhibit significant inelastic axial and bending strains under cyclic loading. This prompted a need 
for considering the low cycle fatigue life for the mild steel bars under bending and axial loading. The FE model 
shows the potential vulnerability of mild steel bars to low cycle fatigue failure. The bar could potentially be 
subjected to failure due to low cycle fatigue limiting its usefulness to dissipate energy in earthquake loading. 
 
A mild steel fracture criterion is therefore needed in the design procedure for hybrid frame by controlling the total 
plastic strains in the mild steel bar below a maximum limit. This paper will present analytical derivation to account 
for development of two equations one which predict the axial strain εaxial and one for the bending strain εb both in 



the plastic range. The total of the two strains will be compared to the allowable strain proposed by Mander [4] to 
predict the fatigue life of the bar. 

INTRODUCTION 
 
From preliminary nonlinear FEA analyses of a 3-D model of a hybrid frame system [Hawileh, 2004], it was 
determined that the mild steel bars in a hybrid frame exhibit significant inelastic axial and bending strains more 
than their intended design. Once the gap at the beam-column interface opens, relatively high levels of repetitive 
plastic strains develop in the mild steel bars. This prompted a need for considering the low-cycle fatigue of the 
mild steel bars including both bending and axial strains. The relatively high inelastic strains in the FE model show 
the potential vulnerability of mild steel bars to low-cycle fatigue failure.  It should be noted that both the PRESSS 
[Stanton and Nakaki, 2002] and National Institute of Standards and Technology (NIST) [Cheok and Stone, 1994] 
test reports indicate bar fractures during cyclic testing.  
A mild steel fracture criterion is therefore needed in the design procedure for hybrid frames by controlling the total 
plastic strains in the mild steel bar below a maximum value. This criterion should be based on the low-cycle 
fatigue behavior of reinforcing steel.  
 
Mander and Panthaki (1994) studied the behavior of reinforcing steel bars under low-cycle fatigue subjected to 
axial-strain reversals with strain amplitudes ranging from yield to 6%. Liu (2001) studied the low-cycle fatigue 
behavior of steel bars subjected to bending strain reversals with variable amplitudes. In this study, a mild steel 
fracture criterion under combined axial and bending strains is proposed based on the works of Mander, Panthaki, 
and Liu. 

Low-Cycle Fatigue for Bar Fracture 

Mander (1994) experimentally evaluated the low-cycle fatigue behavior of reinforcing steel bars subjected to 
cyclic axial strain amplitudes ranging from yield to 6%. He also evaluated the experimental results with low-cycle 
fatigue models found in the literature.  His experimental data were fit to existing fatigue equations. As a result, 
low-cycle fatigue life relationships were developed for reinforcing steel bars. The relationship between plastic-
strain amplitude (εap) and low cycle fatigue life for axial deformations of A615 steel bars developed by Mander is 
as follows: 

        0.4480.0795(2 )
2ap fN
εε −∆

= =           (1)                

We will use this equation as a fatigue criterion to examine the equation we will develop in this paper as follows: 
                 total axial b apε ε ε ε= + ≤                                                        (2) 
In the design of hybrid frame connection, the unbonded length of the mild steel bar Lsu is needed to limit low cycle 
fatigue in the bar. The εaxial will be calculated from εap - εb. This will allow designers to find the safe unbonded 
length Lsu of the mild steel bar at the beam-column interface. 

Bending Strain Calculations for Bars 
 
Liu (2001) presented the following procedure for calculating strain-displacement relationships for bars subjected 
to bending when the material is stressed beyond the elastic range. Consider the deformed bar segment shown in 
Figure 1 below. 
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Figure 1: Deformed Segment of                                   Figure 2:  Location of the Center of Rotation at 
                  Mild Steel Bar                                                                   θdes (Stanton and Nakaki, 2002) 
 
Assuming that the cross section of bar is symmetric (i.e. elastic and plastic neutral axes are at the center of  the 
bar), the bending strain and the radius of curvature can be calculated as follows: 
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Axial Strain Calculations for Bars   
 
In Figure 3 shown below, the solid line CD is the initial unbonded length of the reinforcing bar in a hybrid frame. 
The dashed line DE shows the path that the end D of the unbonded segment of the mild steel bar would take as it 
moves from D to E. 
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Figure 2:  Path of point D of the unbonded segment of the mild steel bar 



Assuming that the center of rotation ″O″  shown in Figure 1 for the opening of the joint at the beam-column 
interface is at the neutral axis of the beam when the hybrid frame is subjected to a design interface rotation of 
θdes, the following can be written using the same assumptions as in PRESSS program (Figure 2 and 3). 
 

R = (1-ζ-ηdes)hg                                                                                                          (5) 
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Where ∆s is the horizontal gap opening at the location of the tension bar at the beam-column interface (Figure 3) 
and εa,a is the axial bar strain as calculated in the PRESSS program assuming that there is no vertical movement 
at the end of the bar as a result of rotation. The ∆s and Lsu can be written as: 
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The axial strain in the reinforcing bar (εaxial) can be written as: 
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Inelastically Deformed Geometry of Bars   

A FE model can be used to accurately predict the inelastically deformed shape of the bar. Once an equation for 
the deflected shape of the bar is derived, the bending and axial strains of the bar can be calculated using 
equations 1 and 10. 
A parametric study involving multiple nonlinear FE models was performed to understand the combined axial and 
bending behavior of the mild steel bar for six different cases listed in Table 1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2.1  Study Cases 

No. (1-ηdes-ζ)h θ des 
Lsu 

(inches) α'' (rad.) ∆X 
(inches) 

∆Y 
(inches) ∆X/Lsu 

1 20 0.02 10 0.4636 0.398 0.204 0.0398 

2 20 0.04 20 0.7854 0.784 0.816 0.0392 

3 30 0.02 15 0.4636 0.597 0.306 0.0398 

4 30 0.04 30 0.7854 1.176 1.224 0.0392 

5 20 0.01 5 0.245 0.200 0.051 0.04 

6 20 0.02 20 0.7854 0.396 0.404 0.0198 
 
The FE Model 
The undeformed geometry of the mild steel bar at the beam-column interface is modeled as shown in Figure 4 
and Table 2 below. The partially unbonded bar and two concrete blocks representing parts of the beam and 
column are modeled. The grout around the bar in the bonded portion is also modeled. The length of the concrete 
block is assumed to be 20 inches on each side of the unbonded length of the bar to provide sufficient bar bonded 
length for all study cases. 
 

Figure 4:  Isoparametric View of the entire Model 

Table 2:   Model Dimensions 

  

Material 
 
Width 

(in) 
 

Height 
(in) 

Diameter 
(in) 

Area 
(in2) 

Bar _ _ 1 0.785 

Grout _ _ 3 6.281 

Concrete 
Block 7 7 _ 41.932 

The ANSYS finite element program was utilized [ANSYS user manual, version 7.1, 2000]. BEAM188 element is 
used to model the entire model. The element has six degrees of freedom at each node. The degrees of freedom 
at each node include translations in x, y, and z directions, and rotations about the x, y, and z directions. BEAM188 
has linear, large rotation, and/or large strain nonlinear capabilities. The most important characteristic of BEAM188 
is that it can be used with any cross section. Elasticity and plasticity models are supported (irrespective of cross 
section subtype). This element is based on the Timoshenko beam theory [1]. Shear deformation effects are also 
included.  
 
Material Properties 

Figures 5 and 6 below show the stress strain diagrams for the mild steel bar and concrete. The modulus of 
elasticity used in the model is 4900 ksi for concrete, 29,000 ksi for steel, and 3500 ksi for the duct grout. 
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Figure 5:  Stress-Strain Curve of Steel Bar [8] Figure 6: Stress-Strain Model of Concrete [9] 

The densities of steel (mild steel and post-tensioning) and concrete were assumed to be 490 lb/ft3 and 150 lb/ft3, 
respectively. The Poisson’s Ratio (ν) was assumed to be 0.3 for steel and 0.2 for concrete. 
 
Boundary Conditions and Loads 

The entire concrete block nodes on the left side of the bar’s unbonded length were restrained (fixed) in all 6 
directions (Figure 4). All of the concrete block nodes at the right end of the unbonded mild steel bar were 
simultaneously deformed to achieve the following concurrent displacements and rotation:  A horizontal 
displacement  ∆X; a vertical displacement ∆Y;  and a rotation θdes. The grout and reinforcing bar elements were 
not restrained in either block. The values of these applied displacements for the six different cases are listed in 
Table 1. The relative magnitudes of these displacements are consistent with the deformations in hybrid frames. 
 
Results and Conclusions 

The FE model provides full fields of stress and strain throughout the model. Figure 7 shows the deflected shape 
of the entire model. Figures 8 and 9 show the horizontal and vertical deformations for Model No. 1. The total 
(elastic + plastic) axial strains and stresses for bar is shown in Figure 10. The results for the bar axial and bending 
strains are listed in Table 3. 

 
Figure 7:  Deflected Shape of the Model 

 

 
Figure 8:  Horizontal Deformation of the Model 

 



 
Figure 9:  Vertical Deformation of the Model 

 

 
Figure 10 Steel Bar Axial Total Strain Distribution 

 
 

Table 3  FEA Result 
 

Case 
Study 

No. 

Average 
Axial 
Strain 

εavg  

Maximum 
Bending 

Strain    εb 
εtotal = εavg + εb (εb / εavg) 

(%) 

1 0.0398 0.0035 0.0433 8.8 

2 0.0392 0.0038 0.0430 9.7 

3 0.0398 0.0025 0.0423 6.2 

4 0.0392 0.0026 0.0418 6.7 

5 0.0400 0.0029 0.0429 7.2 

6 0.0198 0.0019 0.0217 9.5 
The above figures show the development of plastic strains in the mild steel bar with its highest value at the fixed 
end of the bar (Figure 10). The vertical deformation across the unbonded segment of the bar is plotted in Figure 
11 for Model No.1and in Figure 12 for all model cases. 
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Figure 11:  Vertical Deformation of the Unbonded Segment of the Bar 
Figure 12:  Vertical Deformation of the Unbonded Segment of the Bar 

In all six model cases, the vertical deformation data for the bars were fitted into a 3rd order polynomial. The R2 
value of this regression analysis is 1.0 in all cases, which means that the regression results provide perfect fit for 
the FE results. The equations for the vertical deflection, slope, second derivative, curvature, and bending strain 
take the following form: 
 



                                                                       y = ax3 + bx2 + cx + d      (13) 
                                                                       y′ = 3ax2 + 2bx + c      (14) 
                                                                       y″ = 6ax + 2b       (15) 
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A general equation for the bending strain in the bar can be determined using constants a, b, c, and d based on 
the prescribed boundary conditions as follows: 
Boundary Conditions:  
 
At x = 0 
y = 0  ⇒ d = 0 ;   y′ = 0 ⇒ c = 0 
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According to the FE results the values of both the curvature and bending strain are maximum at the fixed end of 
the bar (at x =0). Therefore: 
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where εb,max is the maximum bending strain along the length of the bar. Substituting for b from Eq. 16, 
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